5.5 The Quadratic Formula

Ex. 1 Find the roots/zeroes/x-int of $y=2 x^{2}-11 x+5$.

Can you find the zeroes of $y=2 x^{2}+9 x+6$?

The equation cannot be factored BUT you can see it has two zeroes. So we need another method for finding the zeroes .

Find the zeroes of $y=2(x-1)^{2}-18$
let $y=0$

$$
\begin{aligned}
0 & =2(x-1)^{2}-18 \quad \text { isolate } x \\
18 & =2(x-1)^{2} \\
\frac{18}{2} & =(x-1)^{2} \\
9 & =(x-1)^{2} \\
\pm \sqrt{9} & =\sqrt{(x-1)^{2}} \\
\pm 3 & =x-1 \\
1 \pm 3 & =x
\end{aligned} \begin{aligned}
x & =1+3 \\
&
\end{aligned}
$$

\therefore Zeroes at -244

To find the roots when the equation DOES NOT factor or is not in factored form use :

The Quadratic Formula:	$b^{2}-4 a c$ is called the DISCRIMINANT
For $a x^{2}+b x+c=0$,	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Time for a song! And another....
Ex. 1 Solve. Give EXACT solutions then decimals.
a) $0=x^{2}-3 x+1$
$a=1 \quad b=-3$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$x=\frac{3+\sqrt{5}}{2}$ \& $x=\frac{3-\sqrt{5}}{2}$
$x=2.62 \quad x=0.38$

$$
\begin{gathered}
\text { b) } 2 x(x-3)=7 \\
2 x^{2}-6 x-7=0 \\
\cdots \text { II CANNOT } \\
\text { USE QUAD! } \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(2)(-7)}}{2(2)} \\
x=\frac{6 \pm \sqrt{36+56}}{4} \\
x=\frac{6 \pm \sqrt{92}}{4}=\times x A C+ \\
x=\frac{6+\sqrt{92}}{4} \quad x=\frac{k-\sqrt{92}}{4} \\
=3.90
\end{gathered}
$$

Ex. 2 Solve each of the following using the quadratic formula.

To be continued...

FBUHL
 Page 300
 \#2, 4, 9def

