1) Determine the vertex by completing the square.
$y=0.2 x^{2}-10 x+63$
2) Determine the x-intercepts and the vertex for the following.

$$
y=x^{2}+4 x-45
$$

3) Solve.

$$
0=2 x^{2}-8 x
$$

(1)

$$
\begin{aligned}
& y=0.2 x^{2}-10 x+63 \\
& y=0.2\left(x^{2}-50 x+625-625\right)+63 \\
& y=0.2\left(x^{2}-50 x+625\right)-125+63 \\
& y=0.2(x-25)^{2}-62 \\
& \therefore \text { Vertex }(25,-62)
\end{aligned}
$$

(2)

$$
\begin{gathered}
y=x^{2}+4 x-45 \\
y=(x+9)(x-5) \\
\downarrow \quad \downarrow \\
x=-9 \quad x=5
\end{gathered}
$$

ADS

$$
\left.\begin{array}{rl}
x= & -\frac{9+5}{2} \\
= & -2
\end{array} \int \begin{array}{rl}
\text { sub in to solve for } y \\
y & =(-2)^{2}+4(-2)-45 \\
y & =4-8-45 \\
y & =-49
\end{array}\right]
$$

(3)

$$
\begin{gathered}
0=2 y^{2}-8 x \\
0=2 x(x-4) \\
\downarrow \quad \downarrow \\
x=0 \quad x=4
\end{gathered}
$$

5.4 Graphing from Factored Form

Ex. 1 Determine the x-intercepts and vertex, then sketch.
a) $\begin{gathered}y=x^{2}-8 x+12 \\ y= \\ =(x-2)(x-6) \\ \quad \\ \quad \begin{aligned} & \quad \\ & \quad \\ & x=6\end{aligned}\end{gathered}$
b) $y=9-x^{2}$
$y=-x^{2}+9$
$y=-\left(x^{2}-9\right)$
$y=-(x-3)(x+3)$
AOS $x=\frac{2+6}{2}$
$\frac{\operatorname{AOS}}{x}=\frac{-3+3}{2}$
$x=4$
Sub in
$y=(4-2)(4-6)$
$\frac{\text { Sub in }}{y=9-(0)^{2}}$
$y=-4 \quad v(4,-4)$

$$
y=9 \quad v(0,9)
$$

c) $y=-x^{2}+3 x$ $y=-x(x-3)$
$L \quad \downarrow$
$x=0 \quad x=3$
d) $y=x^{2}-6 x+9$

AOS $x=\frac{3+0}{2}$ $=\frac{3}{2}$
Subin
$\begin{aligned}=\frac{3}{2} & =-\left(\frac{3}{2}\right)^{2}+3 \\ & =-\frac{9}{4}+\frac{9}{2}\end{aligned}$
\therefore Vertex $(3,0)$

Ex. 2 Write an equation in the form $y=a x^{2}+b x+c$ for each graph, by first finding the equation in another form.

x-int are 2,-4
Start $\omega /$ generic form....

$$
\begin{aligned}
& \text { expand } \\
& y=0.3\left(x^{2}+2 x-8\right)
\end{aligned}
$$

$$
\begin{aligned}
\{(3,2.1) \quad y & =a(x-r)(x-5) \\
x \quad y & =a(x-2)(x+4) \\
5 u b & \text { in }(3,2.1) \\
2.1 & =a(3-2)(3+4) \\
2.1 & =a(7) \\
\frac{2.1}{7} & =a \\
0.3 & =a \\
\therefore y & =0.3 x^{2}+0.6 x-2.4
\end{aligned}
$$

expand

$$
\begin{aligned}
& y=0.3\left(x^{2}+2 x-8\right) \\
& y=0.3 x^{2}+0.6 x-2.4
\end{aligned}
$$

$$
y=0.3 x^{2}+0.6 r-2.4 \quad 0.3=a
$$

b)

Vertex $\left(-\frac{3}{2}, 32\right)$

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& y=a\left(x+\frac{3}{2}\right)^{2}+32
\end{aligned}
$$

sub $(-1,30)$ to solve for a

$$
\therefore y=-8\left(x+\frac{3}{2}\right)^{2}+32
$$

$$
\begin{aligned}
& 30=a\left(-1+\frac{3}{2}\right)^{2}+32 \\
& -2=a\left(\frac{1}{2}\right)^{2} \\
& -2=a\left(\frac{1}{4}\right)
\end{aligned}
$$

Expand

$$
\begin{aligned}
& y=-8\left(x+\frac{3}{2}\right)\left(x+\frac{3}{2}\right)+32-8=a \\
& y=-8\left(x^{2}+\frac{3}{2} x+\frac{3}{2} x+\frac{9}{4}\right)+32 \\
& y=-8\left(x^{2}+3 x+\frac{9}{4}\right)+32 \\
& y=-8 x^{2}-24 x-\frac{72}{4}+32 \\
& y=-8 x^{2}-24 x-18+32 \\
& y=-8 x^{2}-24 x+14
\end{aligned}
$$

Ex. 3 The paved surface of a road has a parabolic cross section given by $d=-\frac{1}{125} w^{2}+\frac{2}{25} w$ where d is the depth, in metres and w is the width, in metres from the curb.

Check it out!!!

$$
\begin{array}{lll}
\text { a) Sketch a graph of the relation. AOS } & x=\frac{0+10}{2} & \\
\begin{array}{ll}
d=-\frac{1}{125} \omega(\omega-10) & x=5
\end{array} & \begin{array}{ll}
d=\frac{-1}{125}(5)(5-10) \\
\omega=0 \quad d \quad \omega=10 &
\end{array} & =0.2
\end{array}
$$

b) For what values of w is this relation valid?

$$
0 \leq \omega \leq 10
$$

c) How wide is the road?
d) How high is the road?

$$
10 m
$$

$$
20 \mathrm{~cm} \quad(0.2 \mathrm{~m})
$$

B.C.

