

Complete the square for the quadratic relations

$$
\begin{aligned}
& y=x^{2}-2 x+5 \\
& y=\underbrace{x^{2}-2 x+1}-1+5 \\
& y=(x-1)^{2}+4
\end{aligned}
$$

5.2 Maxima and Minima

Ex. 1 The path of a basketball shot can be modelled by the equation $h=-0.09 d^{2}+0.9 d+2$ where h is the height of the basketball in metres and d is the horizontal distance of the ball from the player in metres.

a. What is the maximum height reached by the ball?

$$
\begin{aligned}
& \begin{array}{l}
h=-0.09 d^{2}+0.9 d+2 \\
h=-0.09\left(d^{2}-10 d+25-25\right)+2 \\
h=-0.09\left(d^{2}-10 d+25\right)+2.25+2 \\
h=-0.09(d-5)^{2}+4.25
\end{array} \\
& \text { Vertex }(5,4.25) \quad \text { Maximum height } \\
& \text { Max height } \quad \text { was } 4.25 \mathrm{~m}
\end{aligned}
$$

b. How far is the ball from the player when it reaches maximum height?

The ball is 5 m from the player.

Ex. 2 The parabolic flight of an aircraft used to simulate weightlessness can be modelled by the quadratic equation: $h=-10 t^{2}+300 \mathrm{t}+9750$
where h is the altitude of the aircraft in metres and t is the time in seconds, since
 weightlessness was achieved. Determine:

$$
V(15,12000)
$$

a. the maximum altitude reached by the aircraft.

$$
\begin{aligned}
& h=-10 t^{2}+300 t+9750 \\
& h=-10\left(t^{2}-30 t+225-225\right)+9750 \\
& h=-10\left(t^{2}-30 t+225\right)+2250+9750 \\
& h=-10(t-15)^{2}+12000
\end{aligned}
$$

b. the number of seconds $\quad \therefore$ Max altitude is 12000 m the aircraft takes to reach its maximum altitude after weightlessness is achieved.

$$
15 \text { seconds }
$$

$$
h=-10 t^{2}+300 t+9750
$$

c. the altitude of the aircraft when weightlessness is first achieved.

$$
\begin{aligned}
& \text { Sub in } t=0 \\
& h=-10(0)^{2}+300(0)+9750 \quad \therefore \text { Altitude was } \\
& h=9750
\end{aligned}
$$

d. the number of seconds the simulation of weightlessness lasts, if weightlessness is lost at the same altitude as it is achieved.

Use a graphing calculator or software.
Ex. 3 The world production of gold is represented by $G=5.2 t^{2}-76 t+1492$, where G is the number of tonnes of gold and t is the number of years since 1970. (ie. $t=5$ represents 1975 etc.)

a) Graph the given equation. Adjust the window so you can see the vertex.
xmin=
xmax=
$y \min =$
max=

b) Determine the vertex.
c) When was the minimum amount of gold mined?
$t=7.31$
(years since 1970)
\therefore Minimum was in 1977
d) What was the least amount of gold mined in one year?

$$
1214 \text { tonnes }
$$

FBOHL
with technologypage 271 \#13, 22
by hand page 271\#12,14,15,18,20

