5.1 Completing the Square

The process of completing the square allows you to change a quadratic equation from standard form to vertex form.

standard form		
$y=x^{2}+4 x+3$	expand	vertex form
complete the square	$y=(x+2)^{2}-1$	

Ex. 1 Use tiles to complete the square for $y=x^{2}+2 x+7$.

Ex. 2 Rewrite each equation in vertex form using tiles to complete the square.
a) $y=x^{2}+8 x-3$

b) $y=x^{2}-6 x+2$

What kind of trinomial are you creating?
Perfect squore trinomial

Can you do that without tiles?
We Sure Can!

We can use a chart instead of algebra tiles.

- The x^{2} and x-terms will go in the chart.
- The constant term will stay apart.

Ex. 3 Rewrite $y=x^{2}+8 x-3$ in vertex form by algebraically completing the square.

Chart	Algebraically
	$x \quad \mid<4$

What do we need to add to $x^{2}+8 x$ to make it a perfect square trinomial?

$$
y=\left(x^{2}+8 x+\frac{16}{94^{2}}\right)-16-3
$$

Factor the trinomial and simplify the constant terms.

$$
y=(x+4)^{2}-19
$$

Ex. 4 Rewrite each of the following in vertex form by completing the square with tiles, then algebraically.
a grid
a) $y=x^{2}-10 x-4$

	x	-5
2	x^{2}	$-5 x$
-5	-57	25

$$
\begin{aligned}
& y=\underset{\substack{\left(x^{2}-10 x+25 \\
5 \frac{10}{2}=5 \\
5 \\
5\right.}}{(7-5)^{2}-29} \\
& y=(25-4
\end{aligned}
$$

$$
-4.25
$$

b) $y=x^{2}+12 x-5$

$$
\begin{aligned}
& y=\left(x^{2}+12 x+36\right)-36-5 \\
& y=(x+6)^{2}-41
\end{aligned}
$$

CHECK!

FBUHL

Use tiles (or tile diagrams) page 270 \#3ace, 4ac, 6, 7

COMPLETING The scluare

