5.1 Completing the Square

The process of completing the square allows you to change a quadratic equation from standard form to vertex form.

Ex. 1 Use tiles to complete the square for $y = x^2 + 2x + 7$.

- place the x^2 terms in the upper left to make a square
- place the *x* terms evenly to the right and below the *x*² terms
- place the "ones" off to the side
- add "ones" to make a square...use the zero principle to place the same # of opposite "ones" off to the side
- write the expression in vertex form

Ex. 2 Rewrite each equation in vertex form using tiles to complete the square.

b)
$$y = x^2 - 6x + 2$$

What do you notice?

	Standard Form	Square	
Example	# of x-terms	# of x- terms on each side of x ²	
$y = x^2 + 2x + 7$	7		1
$y = x^2 + 8x - 3$	8	4	16
$y = x^2 - 6x + 2$	-6	-3	9

What kind of trinomial are you creating?

Perfect Square trinonial Can you do that without tiles?

WE SURE CAN!

We can use a chart instead of algebra tiles.

- The x^2 and x-terms will go in the chart.
- The constant term will stay apart.

Ex. 3 Rewrite $y = x^2 + 8x - 3$ in vertex form by algebraically completing the square.

Chart $\begin{array}{c|cccc} & \chi & 4 \\ & \chi & 4x \\ & 4x & 16 \\ \hline & -3 - 16 \\ & 4x & -19 \\ \end{array}$

$$y = x^2 + 8x - 3$$

What do we need to add to $x^2 + 8x$ to make it a perfect square trinomial?

$$y = (x^2 + 8x + 16) - 16 - 3$$

Factor the trinomial and simplify the constant terms.

$$y = (x + \frac{4}{9})^2 - \frac{19}{9}$$

Ex. 4 Rewrite each of the following in vertex form by completing the square with tiles, then algebraically.

a)
$$y = x^2 - 10x - 4$$

$$y = (x^{2} - 10x + 25) - 25 - 4$$

$$5 \frac{10}{2} = 5$$

b)
$$y = x^2 + 12x - 5$$

$$y = (x^{2} + 12x + 36) - 36 - 5$$

$$y = (x + 6)^{2} - 41$$

CHECK!

FBUHL
Use tiles (or tile diagrams)
page 270 #3ace, 4ac, 6, 7

COMPLETING
THE SCOVARE

[] -> []