4.3 Common Factoring

To factor:

- to rewrite a number or expression as a product of two or more factors \square ADD BRACKETS
- opposite of expanding/multiplying

Common factoring is the opposite of the distributive property.
Why factor?

- You can graph a parabola if its equation is in factored form because you know the zeros AND you can find its vertex.

Factoring Expressions

b) $2 x^{2}-4 x$
$=2 x(x-2)$

Recall: $\frac{x^{m}}{x^{n}}=x^{m-n}$

To divide monomials, divide the coefficients and use exponent laws to simplify the variables.

Ex. 1 Simplify
a) $\frac{8 x^{4}}{2 x^{2}}=4 x^{2}$
b) $\frac{6 x^{2} y}{2 x y^{5}}=3 x y^{-4}$
c) $\frac{-20 a^{3} b c^{5}}{4 b^{2} a c^{8}}=-5 a^{2} b^{-1} c^{-3}$

$$
=
$$

$$
=\frac{3 x}{y^{4}}
$$

$$
=-\frac{5 a^{2}}{b c^{3}}
$$

In order to factor you must first find the common factor of your polynomial \square GCF of all the terms.

Ex. 2 Find the GCF of:
a) $6 x-3 x^{2}+18$
$G C F=3$
b) $2 a^{4}+3 a^{3}+4 a^{2}+a$
c) $15 b^{2}-30 b^{3}+10 b^{5}$
$G C F=a$
d) $14 \mathrm{c}^{7}+21 \mathrm{c}^{6}-35 \mathrm{c}^{3}$

GCF $=5 b^{2}$
e) $16 d^{8} e^{4}-20 e^{5} d^{4}+8 d e^{6}$
$G C F=7 c^{3}$
$G C F=4 d e^{4}$
f) $8 x^{2} y z-6 x y^{3}+10 x^{3} y^{2} z^{4}$
$G C F=2 x y$

Common Factoring Algebraically
Once you have found the GCF take it out of the polynomial (factor it) by dividing each term by the GCF.

Factoring (put brackets IN)

Expanding (take brackets OUT)

Common factoring is the opposite of the distributive property.
\therefore You can always check your answer by expanding!

Ex. 3: Common Factor
a) $12 \mathrm{k}-36 \mathrm{~m}$
b) $9 x^{2} y-3 x^{3} y^{2}-6 x^{4} y$

$$
=12(k-3 m)
$$

$$
=3 x^{2} y\left(3-x y-2 x^{2}\right)
$$

c) $6 x^{2}-9 x-12$

$$
=3\left(2 x^{2}-3 x-4\right)
$$

d) $8 x^{2} y-24 x y+12 y$

$$
=4 y\left(2 x^{2}-6 x+3\right)
$$

e) $4 a^{2}+6 a b+12 a b c$
f) $6 x^{2} y-4 x y-2 y$

$$
=2 a(2 a+3 b+6 b c)
$$

