4.1 Multiplying Binomials

Given a quadratic in vertex form or factored (zeros) form, how could you rewrite it in standard form?

Recall:
vertex form: $y=a(x-h)^{2}+k$
factored form: $y=a(x-r)(x-s)$
standard form: $y=a x^{2}+b x+c$
\square You need to be able to multiply two binomials together!

Simplifying Polynomials

To simplify polynomials you need to identify like terms (terms with the same variables and exponents)

Zero Principle

$+$

$\square+\square=0$

Remember.... you can only add or subtract LIKE TERMS....

Ex. 1 Represent the simplified expression using alge-tiles

Perform each multiplication without a calculator:

This is called an area model.

Ex. 2 Use algebra tiles to expand and simplify.

b) $(2 x+1)(x-2)$

Ex. 3 Use the chart method to expand the following.
a) $\left(2 x^{2}-1\right)\left(3-x^{2}\right)$

	3	$-x^{2}$
$2 x^{2}$	$6 x^{2}$	$-2 x^{4}$
-1	-3	x^{2}

$=-2 x^{4}+6 x^{2}+x^{2}-3$
$=-2 x^{4}+7 x^{2}-3$
b) $\left(m^{2}-2\right)(2 m+1)$

	$2 m$	1
m^{2}	$2 m^{3}$	m^{2}
-2	$-4 m$	-2

$$
=2 m^{3}+m^{2}-4 m-2
$$

now... consider the distributive property!

$$
=2 x^{2}+3 x-4 x-6
$$

$$
=2 x^{2}-x-6
$$

$=x^{2}+x-3 x-3$
$=x^{2}-2 x-3$

Ex. 4 Expand and simplify.
a) $(2 x+1)(x+4)$

$$
\begin{aligned}
& =2 x^{2}+8 x+x+4 \\
& =2 x^{2}+9 x+4
\end{aligned}
$$

c) $(2 q-3 p)(3 q+2 p)$
$=6 q^{2}+\underbrace{4 q p-9 p q}-6 p^{2}$
$=6 q^{2}-5 p q-6 p^{2}$
b) $(5+2 x)(-2+3 x)$

$$
\begin{aligned}
& =-10+15 x-4 x+6 x^{2} \\
& =6 x^{2}+11 x-10
\end{aligned}
$$

d) $-3(x+3)(2 x+1)$
$=-3\left(2 x^{2}+x+6 x+3\right)$

$$
=-3\left(2 x^{2}+7 x+3\right)
$$

$$
=-6 x^{2}-21 x-9
$$

e) $\left(x^{2}-3 x-4\right)\left(2 x^{2}-4 x+5\right)$

$$
\begin{aligned}
& =2 x^{4}-4 x^{3}+5 x^{2}-6 x^{3}+12 x^{2}-15 x-8 x^{2}+16 x-20 \\
& =2 x^{4}-10 x^{3}+9 x^{2}+x-20
\end{aligned}
$$

FBUHL

Page 217
C2, 1, Haceg, Gacfh, Tacf, sace, 9, 10, 14, 16

