3.7 Negative and Zero Exponents

Ex. 1 Complete the table of values for $\mathrm{y}=2^{\mathrm{x}}$. Graph $\mathrm{y}=2^{\mathrm{x}}$.
$\left.\left.\begin{array}{|c|c|}\hline x & y=2^{x} \\ \hline 5 & 32 \\ \hline 4 & 16 \\ \hline 3 & 8 \\ \hline 2 & 4 \\ \hline 1 & 2 \\ \hline 0 & 1 \\ \hline\end{array}\right) \div 2 \div 2 \begin{array}{|c|c|}\hline x & y=2^{x} \\ \hline-1 & \frac{1}{2} \\ \hline-2 & \frac{1}{4} \\ \hline\end{array}\right\}$

Describe the graph. How does it compare to $y=x^{2}$?

- As x increases, y increases
- As x approaches $-\infty$ graph is flattening out
- As x approaches $\underset{\leftrightarrow \infty}{+\infty}$ graph be comes
larger.

Will the graph ever cross the x-axis? Explain.
No, only getting closer and closer

Ex. 2 Complete the table for $\mathrm{y}=3^{\mathrm{x}}$.
$\left.\begin{array}{|c|c|}\hline x & y=3^{x} \\ \hline 5 & 243 \\ \hline 4 & 81 \\ \hline 3 & 27 \\ \hline 2 & 9 \\ \hline 1 & 3 \\ \hline 0 & 1 \\ \hline\end{array}\right)$

x	$y=3^{x}$
-1	$\frac{1}{3}$
-2	$\frac{1}{9}$
-3	$\frac{1}{27}$
-4	$\frac{1}{81}$
-5	$\frac{1}{24}$
-6	

Ex. 3 Use the pattern in the previous examples to determine the value of:
a) $\begin{aligned} & 4^{-1} \\ & =\frac{1}{4}\end{aligned}$
b) $\begin{aligned} 5^{-2} & =\frac{1}{5^{2}} \\ & =\frac{1}{25}\end{aligned}$
c) $\begin{aligned} & 7^{-3} \\ & =\frac{1}{7^{3}}\end{aligned}$
d) $\begin{aligned} & 4^{-2} \\ & =\frac{1}{16}\end{aligned}$
$=\frac{1}{343}$
e) $5^{5^{0}}=1$
f) $4^{0}=1$
g) $9^{0}=1$
h) $435^{\circ}=1$
Rule: for any non-zero base "a"

$$
\mathrm{a}^{0}=1 \quad \text { and } \quad \mathrm{a}^{-\mathrm{k}}=\frac{1}{\mathrm{a}^{\mathrm{k}}}
$$

Ex. 4 Evaluate. No decimals.
a) $2^{-3} \frac{1}{2^{3}}$
b) $\begin{aligned} & 3^{-4} \\ & =\frac{1}{3^{4}}\end{aligned}$
c) $\begin{aligned} & 5^{-3} \\ & =\frac{1}{53}\end{aligned}$
d) $\begin{aligned} & 6^{-2} \\ & =\frac{1}{6^{2}}\end{aligned}$
$=\frac{1}{8}$
$=\frac{1}{81}$
$=\frac{1}{125}$
$=\frac{1}{36}$
e) $(-2)^{-4}$
$=\frac{1}{(-2)^{-4}}$
f) $(-3)^{-1}$
$=\frac{1}{-3}$
g) $(-4)^{-3}$
$=\frac{1}{(-4)^{3}}$
h) -5^{-2}
$=\frac{1}{-64}$
$=-\frac{1}{64}$
$=-\frac{1}{52}$
$=-\frac{1}{25}$

Ex. 5 Evaluate. No decimals.
a) $\left(\frac{1}{4}\right)^{-2}$
b) $\left(\frac{-2}{3}\right)^{-3}$
c) $\left(\frac{-1}{5}\right)^{-1}$
d) $\left(\frac{4}{3}\right)^{-2}$
$=\left(\frac{4}{1}\right)^{2}$
$=\left(\frac{3}{-2}\right)^{3}$
$=\left(\frac{5}{-1}\right)^{1}=\left(\frac{3}{4}\right)^{2}$
$=4^{2}$

$$
=\frac{3^{3}}{(-2)^{3}}
$$

$$
=-5
$$

$$
=\frac{3^{2}}{4^{2}}
$$

$=16$

$$
=\frac{9}{16}
$$

$$
\begin{aligned}
& =\frac{27}{-8} \\
& =-\frac{27}{8}
\end{aligned}
$$

Ex. 6 A bacteria colony decays by $1 / 2$ of its original population every 5 hours.
a) What fraction remains after 20 hours? 30 hours? 50 hours?
b) Write each fricton from a)
b) Write each fra (cion from a) as a power with a negative exponent.
c) If the colony started with 32768 bacteria. How many remain after 25 hours?

Practice Time: page 199 \#1-5,8,11

"I couldn't do my homework because my computer has a virus and so do all my pencils and pens."

