## 3.6 Factored Form

Investigate:

Graph the equation and note the location of the x-intercepts, axis of symmetry and vertex.

| Equation              | x-int.                                    | axis of symmetry                  | vertex                                               | sketch |
|-----------------------|-------------------------------------------|-----------------------------------|------------------------------------------------------|--------|
| y = (x - 4)(x + 2)    | x=4 (4,0)<br>x=-2<br>(-2,0)               |                                   | 50b x=1<br>y=(1-4)(1+2<br>z=- ad<br>z=- ad<br>(1,-9) |        |
| y = 0.5(x - 5)(x - 1) | /                                         | $\chi = \frac{5+1}{2}$ $\chi = 3$ | 50.5(-2<br>5-0.5(-2<br>V(3,-2)                       | (2)    |
| y = 2x(x+4)           | (-4 <sub>1</sub> 0)<br>(0 <sub>1</sub> 0) | χ=-2                              | ·<br>(-2,-8)                                         |        |
| y = (x - 2) (x - 7)   | (2,0)<br>(7,0)                            | x= 7/2                            | 9/18<br>1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1        |        |
| y = (x + 4)(x + 4)    | (-4,0)                                    | x=-4                              | (-4,0)                                               |        |
| y = -3(x + 2)(x + 5)  | (-2,0)                                    | X=-72                             | (7,27)<br>(2,4)                                      |        |

**Summary:** 

$$y = a(x - r)(x - s)$$
same "a" as vertex form

- represents an equation in FACTORED form
- the x-intercepts, or zeros, are r and s
- the axis of symmetry is between the x-intercepts  $x = \frac{r+s}{2}$
- the x-coordinate of the vertex is the value of the axis of symmetry
- find the y-coordinate of the vertex by substituting the x-coordinate of the vertex in the equation

Ex. 1 Determine the equation of the parabola in factored form. Algebraically determine the value of 'a'.

a)



b)



y=a(x-r)(x-s)

y=a(x+1)(x-3)

$$8 = 9(1+1)(1-3)$$

$$8 = 9(2)(-2)$$

$$8 = 9(-4)$$

$$-2 = 9$$

: 
$$y = -2(x+1)(x-3)$$

$$y=a(x-7)/x)$$

$$-3=\alpha(-6)$$

$$\frac{1}{2}=\alpha$$

Ex. 2 Sketch each parabola. Label the x-intercepts and the vertex.

a) 
$$y = (x-3)(x+5)$$

$$\chi=3$$
 4  $\chi=-5$ 

$$\frac{\text{A.O.S.}}{\chi = -5 + 3}$$

$$Y = \frac{3}{2}$$

$$= -1$$

b) 
$$y = -0.3(x+2)(x+5)$$

$$\chi=-2$$
 d  $\chi=-5$ 

$$\begin{array}{ll}
\chi = -2 & \text{d} & \chi = -5 \\
\underline{A.0.5.} & \text{Sub } \chi = -\frac{7}{3} \\
\chi = -\frac{2}{5} & \text{g} = -0.3\left(-\frac{7}{3} + \frac{4}{2}\right)\left(-\frac{7}{3} + \frac{10}{2}\right) \cdot \frac{3}{5} \cdot \frac{7}{5} \cdot \frac{6}{5} \cdot \frac{4}{5} \cdot \frac{8}{5} \\
= -\frac{7}{3} & = -0.3\left(-\frac{3}{3}\right)\left(\frac{3}{2}\right) \\
= 0.675 \\
V\left(-3.5, 0.675\right)
\end{array}$$

c) 
$$y = -\frac{1}{2}(x-1)(x+6)$$

$$\frac{4.0.5}{x = 1 + (-6)}$$

$$= \frac{-5}{2}$$

$$4^{-\frac{1}{2}}\left(-\frac{5}{2}-\frac{2}{2}\right)\left(-\frac{5}{2}+\frac{12}{2}\right)$$







- Ex. 3 Chris kicked a ball from the ground. It travelled a horizontal distance of 52 m and reached a maximum height of 17 m.
- a) Draw a sketch of the relation between horizontal distance and height.

$$A.O.S. = 0.452$$
= 26





b) Determine the equation of the relation in factored form.

$$y = a(x-r)(x-s)$$
  
 $y = a(x-r)(x-s)$ 

$$17 = \alpha(26-0)(26-52)$$

$$17 = \alpha(-676)$$

$$-\frac{17}{676} = a$$

$$y = -\frac{17}{676}(x)(x-52)$$

## **Your Turn**



