3.6 Factored Form

Investigate:
Graph the equation and note the location of the x-intercepts, axis of symmetry and vertex.

Summary:

$$
y=a(x-r)(x-s)
$$

- represents an equation in FACTORED form
- the x-intercepts, or zeros, are r and s
- the axis of symmetry is between the x -intercepts $\mathrm{x}=\frac{r+s}{2}$
- the x-coordinate of the vertex is the value of the axis of symmetry
- find the y-coordinate of the vertex by substituting the x-coordinate of the vertex in the equation

Ex. 1 Determine the equation of the parabola in factored form. Algebraically determine the value of ' a '.
a)

$$
y=a(x-r)(x-5)
$$

b)

$$
\begin{aligned}
& y=a(x+1)(x-3) \\
& 8=a(1+1)(1-3) \\
& 8=a(2)(-2) \\
& 8=a(-4) \\
& -2=a \\
& \therefore y=-2(x+1)(x-3)
\end{aligned}
$$

Ex. 2 Sketch each parabola. Label the x-intercepts and the vertex.
a) $y=(x-3)(x+5)$

$$
\begin{aligned}
& x=3 \quad d \quad x=-5 \\
& \begin{array}{ll}
\text { A.O.S. } & \\
\begin{array}{rlrl}
x & =\frac{-5+3}{2} & & \text { Find } y \\
& =-1
\end{array} & \begin{aligned}
\text { Sub } x=-1 & =(-1-3)(-1+5) \\
& =(-4)(4)
\end{aligned}
\end{array} \\
& V(-1,-16)
\end{aligned}
$$

b) $y=-0.3(x+2)(x+5)$

$$
\begin{aligned}
& x=-2 \quad d \quad x=-5 \\
& \begin{aligned}
\frac{A .0 . S}{x} & =\frac{-2}{2}-5 \\
& =\frac{-7}{2} \quad \begin{array}{l}
y=-0.3\left(-\frac{7}{2}+\frac{4}{2}\right)\left(-\frac{7}{2}+\right. \\
\\
\end{array} \quad=-0.3\left(-\frac{3}{2}\left(\frac{3}{2}\right)\right. \\
& =0.675
\end{aligned} \\
& \qquad(-3.5,0.675)
\end{aligned}
$$

c) $y=-\frac{1}{2}(x-1)(x+6)$
$x=1$ \& $x=-6$
A.O.S.

$$
\begin{aligned}
x & =\frac{1+(-6)}{2} \\
& =\frac{-5}{2}
\end{aligned}
$$

Sub $x=-\frac{5}{2}$

$y=-\frac{1}{2}\left(-\frac{5}{2}-1\right)\left(-\frac{5}{2}+6\right)$
$y=-\frac{1}{2}\left(-\frac{5}{2}-\frac{2}{2}\right)\left(-\frac{5}{2}+\frac{12}{2}\right)$
$y=-\frac{1}{2}\left(-\frac{7}{2}\right)\left(\frac{7}{2}\right)$
$=\frac{49}{8}$

Ex. 3 Chris kicked a ball from the ground. It travelled a horizontal distance of 52 m and reached a maximum height of 17 m .
a) Draw a sketch of the relation between horizontal distance and height.

$$
\begin{aligned}
\frac{\text { A.0.S }}{x} & =\frac{0+52}{2} \\
& =26
\end{aligned} \quad v(26,17)
$$

b) Determine the equation of the relation in factored form.

$$
\begin{gathered}
y=a(x-r)(x-5) \\
y=a(x-0)(x-52)
\end{gathered}
$$

Sub in $V(26,17)$

$$
\begin{aligned}
& 17=a(26-0)(26-52) \\
& 17=a(26)(-26) \\
& 17=a(-676) \\
&-\frac{17}{676}=a \\
& \therefore y=-\frac{17}{676}(x)(x-52)
\end{aligned}
$$

