3.2 Quadratic Relations

A quadratic function's equation that can be written

 in the form $y=a x^{2}+b x+c$, where a, b and c are constants and $a \neq 0$.Why can't $a=0$?

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& y=0\left(x^{2}\right)+b x+c \\
& y=b x+c
\end{aligned}
$$

Here are three examples of quadratic relations; state the values of a, b and c.

$$
\begin{array}{ccc}
y=2 x^{2}+3 x+1 & y=5 x^{2}-4 & y=x^{2} \\
\uparrow_{a=2, b=3, c=1} & \bigcap_{i=5, b=0, c=-4} & a=1, b=0, c=0
\end{array}
$$

Features of Quadratics

- The vertex of a parabola is either the minimum point (opens up) or maximum point (opens down).
- A vertical line of symmetry which goes through the vertex is called the axis of symmetry.
- The x-intercept(s) of a parabola are called its zeros or roots.

How can you tell if data is linear?
Check for constant first differences

Let's examine some data from the last lesson. What patterns do you notice?

(:) Linear Relation: if a relation has constant first differences (ie. slope) the relation is linear.
(:) Quadratic Relation: if a relation has constant second differences the relation is quadratic.

Ex. 3 Calculate the first and second differences to determine whether the relation is linear, quadratic, or neither.

x	y	$I S T$	
-1	5	23	
0	7	2	
1	9	2	
2	11	2	
3	13	2	

Linear

x	y		
-3	7		
0	4	-3	
3	1	-3	
6	-2	-3	
9	-5	-3	
Linear			

x	y	IST	2
-2	3	503	$\overline{M n}$
-1	-3	-6	Wh
0	-5	-2	4
1	-3	2	4
2	3	6	4

QUAIRATIC

x	y		
1	4		
2	6	2	
3	12	6	4
4	18	6	0
5	28	10	4

NETHER

Applications

Ex. 4 The path of a golf ball is modelled by the equation $y=-x^{2}+5 x$, where x represents the horizontal distance travelled by the ball in metres and y represents the height of the ball in metres.
a) Complete the table of values and graph the relation.

$$
y=-x^{2}+5 x
$$

Distance (m)
b) Determine the coordinates of the vertex.

$$
\left(2.5, \frac{25}{4}\right) \quad\left\{y=-\left(\frac{5}{2}\right)^{2}+5\left(\frac{5}{2}\right)\right.
$$

c) What was the maximum height of the ball?

$$
\frac{25}{4}=6.25 \quad \therefore \text { Max was } 6.25 \mathrm{~m}
$$

d) How far away does the ball land?

$$
5 m
$$

e) What was the height of the ball 4 m away from the golfer?

p. 172\#5,6 ($\omega /$ Technology)

