3.2 Quadratic Relations

A **quadratic function**'s equation that can be written in the form $y = ax^2 + bx + c$, where a, b and c are constants and $a \ne 0$.

Why can't
$$a = 0$$
?

$$y = ax^{2} + bx + c$$

$$y = 0(x^{2}) + bx + c$$

$$y = bx + c$$
This is linear

Here are three examples of quadratic relations; state the values of a, b and c.

Features of Quadratics

- The <u>vertex</u> of a parabola is either the minimum point (opens up) or maximum point (opens down).
- A vertical line of symmetry which goes through the vertex is called the *axis of symmetry*.
- The x-intercept(s) of a parabola are called its **zeros** or roots.

How can you tell if data is linear?

Check for constant first differences

Let's examine some data from the last lesson. What patterns do you notice?

Side Length	Total # of Toothpicks	D Decene	2nd Diss
0	0		
1	3		3 , , ,
2	9	26 <	200 Diff.
3	<u>×</u>	29 <	3 July D.42.
4	30 <	$Y_{\lambda} <$	3 2nd DAS 3 Quadratiz
5	45	>15 /	13

- Linear Relation: if a relation has constant first differences (ie. slope) the relation is linear.
- Quadratic Relation: if a relation has constant second differences the relation is quadratic.

both depend on a constant increment of the independent variable

Ex.3 Calculate the first and second differences to determine whether the relation is linear, quadratic, or neither.

Х	у	157	
-1	5 (M	
0	7 (گر	
1	9 (22	
2	11(`	
3	13	7	
1:000			

Linear

Х	у	121	ومك
-2	3 <	Mis,	M
-1	-3 <	-63	
0	-5 \	\ \ \	<u></u>
1	-3(\	4
2	3 1	6	4
QUADRATIC			

Х	у		
-3	7		
0	4	ر م	
3	1 (ر ا	
6	-2	ً کا	
9	-5	- 3	
Linear			

Х	у		
1	4		
2	6 (2、	
3	12	9	4
4	18	6	٥
5	28	10	4

NEITHER

Applications

Ex. 4 The path of a golf ball is modelled by the equation $y = -x^2 + 5x$, where x represents the horizontal distance travelled by the ball in metres and y represents the height of the ball in metres.

a) Complete the table of values and graph the relation.

b) Determine the coordinates of the vertex.

$$(2.5, \frac{25}{4})$$

c) What was the maximum height of the ball?

$$\frac{25}{4} = 6.25$$
 : Max was 6.25 m

d) How far away does the ball land?

e) What was the height of the ball 4 m away from the golfer?

Graphically 4m high

$$\begin{array}{c}
3y = -4 \\
7 = -4^2 + 5(4) \\
= 4
\end{array}$$

FBUHL)
Your Turn:
P172 #1,2,3
(By hard)

P. 172#5,6 (w/ Technology)

