Ex. 1 Determine the radius of a circle with endpoints of a diameter $M(-3,5)$ and $N(9,7)$.

Approach 1
(1) Find midpoint
(2) Distance from midpoint to either MorN
(1) $M_{\text {MN }}=\left(-\frac{3+9}{2}, \frac{5+7}{2}\right)$

$$
=(3,6)
$$

(2)

$$
\begin{aligned}
l_{P N} & =\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \\
& =\sqrt{(3-9)^{2}+(6-7)^{2}} \\
& =\sqrt{36+1} \\
& =\sqrt{37}
\end{aligned}
$$

Approach 2
(1) Find length MN
(2) Divide length by 2 for radius

$$
\begin{aligned}
11 \ell_{M N} & =\sqrt{(-3-9)^{2}+(5-7)^{2}} \\
& =\sqrt{(-12)^{2}+(-2)^{2}} \\
& =\sqrt{144+4} \\
& =\sqrt{148}
\end{aligned}
$$

Diameter
(2)

$$
\begin{aligned}
r & =\frac{d}{2} \\
& =\frac{\sqrt{148}}{2}\left\{\frac{\sqrt{148}}{2} \div 6.1\right. \\
& =\frac{\sqrt{4 \times 37}}{2} \\
& =\frac{\sqrt{4} \sqrt{37}}{2} \\
& =\frac{22 \sqrt{37}}{2} \\
& =\sqrt{37}
\end{aligned}
$$

\therefore The radius is $\sqrt{37}$ units

Investigate!

What is the shortest distance from the point to the line?

- Draw a line and a point.
- Connect the point and line with several line segments.
- Measure the line segments.
- Which is the shortest? What are its properties?

The one that creates 90°.

The shortest distance from a point to a line is always the length of the segment that is perpendicular to the line.

How do you find this length?

Ex. 2 Find the shortest distance from $(2,2)$ to the line $y=x+1$

Find B (intersection)
(4) (1) $y=-x+4$

$$
\begin{aligned}
(1)+(2) \frac{1}{2} & =x+1 \\
2 y & =5 \\
y & =\frac{5}{2}
\end{aligned}
$$

Sub $y=\frac{5}{2}$ into (2)

$$
\begin{gathered}
\frac{5}{2}=x+1 \\
\frac{5}{2}-1=x \\
\frac{3}{2}=x \\
\therefore B\left(\frac{3}{2}, \frac{5}{2}\right)
\end{gathered}
$$

Find the line $A B$
(1) Slope of given line

$$
\begin{aligned}
& y=x+1 \\
& m=1 \\
& m_{\perp}=-1
\end{aligned}
$$

(2) $\begin{aligned} & m=1 \\ & m_{1}=-1 \\ & \text { (3) Eq n of } A B\end{aligned}$

Sub:

$$
\text { b: } \begin{aligned}
m & =-1 \Rightarrow y \\
(2,2) & =m x+b \\
2 & =-2+b \\
b & =4 \\
\therefore y & =-x+4
\end{aligned}
$$

Find length $A B$

> (5)

$$
\begin{aligned}
l_{A B} & =\sqrt{\left(\frac{3}{2}-2\right)^{2}+\left(\frac{5}{2}-2\right)^{2}} \\
& =\sqrt{\left(-\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}} \\
& =\sqrt{\frac{1}{4}+\frac{1}{4}} \\
& =\sqrt{\frac{1}{2}}\left\{\begin{aligned}
& =\frac{\sqrt{3}}{\sqrt{2}} \\
& =\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{\sqrt{2}}{2}
\end{aligned}\right.
\end{aligned}
$$

Ex. 3 Given the line containing the point (0,4) and (12,10), determine the distance from $A(6,19)$ to the line.

(1) Find eq g of l_{1}

How is this question different
from the last one?
We need to FIND l_{1} before hand.... (No eq of the line)
(2) Find eq of $A B$

- use m_{1} of slope from l_{1}
- use point A
(3) Find intersection of $A B+l_{1}$
(4) Find length $A B$
- Using solution of (3) \&A

What we are doing is called analytic geometry!

FBUHL

Basic: Pg. 96 \#1de,2bc,6 Regular: Pg. 97 \#4d,8,11bcd Challenge: Pg. 98 \#15,17

(c) Mark Parisi, Permission required for use.

