2.4 Distance Between Points

Recall:
The Pythagorean Theorem: the square of the hypotenuse is equal to the sum of the squares of the other two sides in a right triangle.

What is the distance between the points $\mathrm{A}(2,5)$ and $\mathrm{B}(7,1)$?

$=7-2$
$=5$
$=5$

We can create a right triangle and use the Pythagorean Theorem.

Add the point $C(\underline{2}, \underline{1})$.
$d^{2}=(-4)^{2}+5^{2}$
$d^{\prime}=16+25$
$d= \pm \sqrt{41}$

$$
\therefore d>0, \quad \therefore d=\sqrt{41}
$$

We can derive a general formula using the same method.

Distance Formula:

$$
\mathrm{P}_{1} \mathrm{P}_{2}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \int \text { MEMORIZE! }
$$

Ex. 1 What is the distance from the origin to the point $(-1,-4)$?

$$
\begin{aligned}
&(0,0) d(-1,-4) \\
& d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \\
&=\sqrt{(-1-0)^{2}+(-4-0)^{2}} \quad \therefore \sqrt{17} \text { units } \\
&=\sqrt{1+16} \\
&=\sqrt{17}
\end{aligned}
$$

Ex. 2 Find the length of the line segments with the following endpoints.
a) $A(-3,0)$ and $B(-3,2)$
b) (-4,7) and D $(3,1)$

$$
\begin{aligned}
l_{A B} & =\sqrt{(-3-(-3))^{2}+(2-0)^{2}} & l_{C D} & =\sqrt{(3-(-4))^{2}+(1-7)^{2}} \\
& =\sqrt{0+4} & & =\sqrt{49+36} \\
& =2 & & =\sqrt{85}
\end{aligned}
$$

Ex. 3 Determine the length of the median from vertex A of a triangle whose

(1) Midpoint BC

$$
\begin{aligned}
M_{B C} & =\left(\frac{-7+5}{2}, \frac{7+(-3)}{2}\right) \\
& =(-1,2)
\end{aligned}
$$

(2) Distance from A to $M_{R C}$ $(-2,6) \quad(-1,2)$

$$
\begin{aligned}
d & =\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \\
& =\sqrt{(-1-(-2))^{2}+(2-6)^{2}} \\
& =\sqrt{1+16} \\
& =\sqrt{17}
\end{aligned}
$$

\therefore length of median
is $\sqrt{17}$ units

FBUHL

Basic: Pg. 77 \#C3,2bd,3bc,8 Regular: Pg. 77 \#5,10,12 Challenge: Pg. 79 \#20

