2.2 Equations of Medians, Altitudes and Right Bisectors
A. MEDIANS

a median joins the vertex of a triangle to the midpoint of the opposite side

Ex. 1: Determine the equation of the median from J for the triangle with vertices $J(2,5), K(4,-1)$ and $L(-2,-5)$.
(1) Find midpoint of LK

(2) Find slope of $J M_{L K}$
(3) Substitute slope in $y=m x+b$ with (x, y) from J or $M_{\text {uk }}$ to find y-int
(4) Write equation

$$
\text { (1) } \begin{aligned}
M_{L K} & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{-2+4}{2}, \frac{-5+(-1)}{2}\right) \\
& =(1,-3)
\end{aligned}
$$

(3)

$$
\text { Sub } m=8, J(2,5)
$$

$$
\begin{aligned}
5 & =8(2)+b \\
5 & =16+b \\
5-16 & =b
\end{aligned}
$$

(2) $m_{J M}=\frac{\Delta y}{\Delta x}$

$$
\begin{aligned}
J(2,5) & =\frac{5-(-3)}{2-1} \\
M_{u k}(1,-3) & =\frac{8}{1} \\
& =8
\end{aligned}
$$

B. PERPENDICULAR (OR RIGHT) BISECTORS

look: does not have to go through vertex

Ex. 2 Below is one of the most famous triangles... THE BERMUDA TRIANGLE! A ship plans to take the path of the perpendicular bisector from the segment $E F$. He wishes to be tracked the whole way. Can you determine the equation of his ship?

$$
E(4,-3) \quad F(10,-7)
$$

(1) Find slope of EF
(2) Find 1 slope
(3) Find midpoint of EF ($M_{E F}$)
(4) Use $m_{\perp} \& m_{E F}$ in $y=m x+b$ to find y-int
(1) $m_{E F}=\frac{-7-(-3)}{10-4}$
(5) Write equation

$$
\begin{aligned}
& =-\frac{4}{6} \\
& =-\frac{2}{3}
\end{aligned}
$$

(2) $m_{\perp}=\frac{3}{2}$
(3) $M_{E F}=\left(\frac{4+10}{2}, \frac{-3+(-7)}{2}\right)$

$$
=(7,-5)
$$

(4) Sub $m=\frac{3}{2} d$

$$
-5=\frac{21}{2}+b
$$

$$
-\frac{10}{2}-\frac{21}{2}=b
$$

$$
\frac{-31}{2}=b
$$

$$
\text { (5) } y=\frac{3}{2} x-\frac{31}{2}
$$

C. ALTITUDES

An altitude joins the vertex of a triangle to its opposite side at 900

Ex. 3 Determine the equation of the altitude from A.
(1) Find slope of $C B$
(2) Find \qquad slope
(3) Substitute $m_{\perp} d$ point A into $y=m x+b$ to find y-int.

(4) Write the equation
(1)

$$
\begin{aligned}
m_{C B} & =\frac{3-5}{-7-(-1)} \\
& =\frac{-2}{-6} \\
& =\frac{1}{3}
\end{aligned}
$$

(2) $m_{1}=-3$
(3) Sub $m=-3$ \& $(4,-1)$ into $y=m x+b$

$$
\begin{aligned}
-1 & =-3(4)+b \\
-1 & =-12+b \\
11 & =b
\end{aligned}
$$

(4)

$$
y=-3 x+11
$$

FBUHL:

Basic: pg. 66 \#4, pg. 100 \#4
Regular: pg. 65 \#C3, 8,17 \& Pg. 90 \#18 Challenge: pg. 68 \#23,29

