2.1 Midpoint and Review of $y=m x+b$

Remember... To write the equation of a line you need 2 points.

- Perpendicular lines

- Parallel lines have the same slope.
have slopes that are negative reciprocals.
- Same x-int means find the x-int by substituting $y=0$, then use this point, $(x, 0)$, as a point on the line.

- Given two points, find slope using

$$
m=\frac{\Delta y}{\Delta x}
$$

- Can use any point on the line to substitute along with m to find equation.

Point-Slope Form of a Line: $y=a(x-h)+k$

Determine the equation of the line with slope 2 that goes through the point $(3,5)$.

Your way: $\quad y=m x+b$

$$
\begin{aligned}
y & =2 x+b \\
5 & =(2)(3)+b \\
5 & =6+b \\
-1 & =b
\end{aligned}
$$

$$
y=2 x-1 \quad x^{\text {Sub }}
$$

My way: $\quad y=a(x-h)+k$

$$
y=2(x-h)+k \quad \text { Substitute the slope for } a
$$

$$
y=2(x-3)+5 \quad \text { Substitute the point for }(h, k)
$$

$$
y=2 x-6+5
$$

$$
y=2 x-1
$$

My Way 2

$$
\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=m
$$

$$
\frac{y-5}{x-3}=2
$$

$$
y-5=2(x-3)
$$

$$
\begin{aligned}
& y=2 x-6+5 \\
& y=2 x-1
\end{aligned}
$$

Examples: Find the equations of the following lines:
a) passes through $C(3,-4)$ and $D(-1,7)$?

$$
\begin{array}{rlrl}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & y & =m x+b \\
& =\frac{7-(-4)}{-1-3} & -4 & =-\frac{11}{4}(3)+b \\
& =\frac{11}{-4} & -4+\frac{33}{4} & =-\frac{33}{4}+b \\
& =-\frac{11}{4} & -\frac{16}{4}+\frac{33}{4} & =b \\
\frac{17}{4} & =b
\end{array}
$$

b) perpendicular to $4 x+3 y-7=0$ with the same x-intercept as

$$
\begin{aligned}
& 2 x+3 y-12=0 \\
& 4 x+3 y-7=0 \\
& 3 y=-4 x+7 \\
& y=-\frac{4}{3} x+\frac{7}{3} \\
& m=-\frac{4}{3} \\
& m_{\perp}=\frac{3}{4}
\end{aligned}
$$

$$
\begin{array}{r}
\frac{x-i n t}{s u b y}=0 \\
2 x+3 y-12=0 \\
2 x+3(0)-12=0 \\
2 x=12 \\
x=6 \\
(6,0)^{x}
\end{array}
$$

$$
\begin{aligned}
\frac{y-y_{1}}{x-x_{1}} & =m \\
\frac{y-0}{2 x-6} & =\frac{3}{4} \\
y & =\frac{3}{4}(x-6) \\
y & =\frac{3}{4} x-\frac{3}{2}\left(\frac{6}{1}\right) \\
y & =\frac{3}{4} x-\frac{9}{2}
\end{aligned}
$$

SPECIAL CASES: Horizontal \& Vertical Lines
c) a vertical line passing through $(-3,5)$

d) a horizontal line passing through (7,-2)

The Midpoint

Notation: $M\left(x_{M}, y_{M}\right)$ is used for midpoint.
Remember that m denotes slope!

What are the coordinates of the midpoint of segment $A B$?

How can you determine the midpoint algebraically given the coordinates of the endpoint?

$$
\begin{aligned}
M_{A B} & =\left(\frac{1+9}{2}, \frac{2+6}{2}\right) \\
& =(5,4)
\end{aligned}
$$

The coordinates of the midpoint of a line segment are found by taking averages:

$$
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Ex. 1 Find the midpoint of the line segment $A B$ where $A(2,-4)$ and $B(-3,5)$.

$$
\begin{aligned}
M_{A B} & =\left(\frac{-3+2}{2}, \frac{5+(-4)}{2}\right) \\
& =\left(-\frac{1}{2}, \frac{1}{2}\right)
\end{aligned}
$$

Ex. $2 C(4,-3)$ is the midpoint of a line segment with endpoints $A(7,5)$ and B. Determine the coordinates of B.

$$
\begin{array}{ll}
\left(x_{m}\right)\left(y_{m}\right) & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
x_{M}=\frac{x_{1}+x_{2}}{2} & \Rightarrow y_{m}=\frac{y_{1}+y_{2}}{2} \\
4=\frac{7+x_{2}}{2} & -3=\frac{5+y_{2}}{2} \\
8=7+x_{2} & -6=5+y_{2} \\
1=x_{2} & y_{2}=-11
\end{array} \quad \therefore B(1,-11)
$$

Ex. 3 The diameter of a circle has endpoints $A(4,-3)$ and $B(-3,5)$. Find the centre of the circle.

$$
\begin{aligned}
M_{A B} & =\left(\frac{4+(-3)}{2}, \frac{-3+5}{2}\right) \\
& =\left(\frac{1}{2}, 1\right)
\end{aligned}
$$

\therefore Centre of the circle is $\left(\frac{1}{2}, 1\right)$

FBUHL $\begin{array}{ll}\text { Basic } & \text { Pg } 66 \# 1 \mathrm{a}, 2 \mathrm{ad}, 6 \\ \text { Regular } & \mathrm{Pg} 55 \# 5 \mathrm{c}, 6 \mathrm{~b}, 8 \mathrm{bc} \\ & \mathrm{Pg} 66 \# 3 \mathrm{c}, 4 \mathrm{~b}, 12,13 \mathrm{a}\end{array}$ Challenge Pg 67 \#15,16

