1.5 Types of Intersections \& Equivalent Systems

A: Types of Intersections

How many solutions can a system of linear equations have?
How can you tell just by looking at the equations?

A linear system can have:
ONE SOLUTION
--> The lines intersect at one point
The two linear equations have

- different slopes
- y-intercept does not matter

NO SOLUTION
--> The lines do not intersect
The two linear equations have

- same slopes
- different y-intercepts

INFINITE NUMBER OF SOLUTIONS

--> The lines intersect at every point
The two linear equations have

- same slopes
- same y-intercepts

Ex. 1 Complete the table.

What kind of equations give an INFINITE number of solutions?
Equivalent equations

- Same slope of y-int
- Multiples of a given
ie. $y=3 x-4$

$$
\begin{aligned}
3 y & =9 x-12 \\
-2 y & =-6 x+8
\end{aligned}
$$

Ex. 2
For what value of p will the system of linear equations have NO solution?
a)

$$
\begin{aligned}
& x-2 y=4 \text { (1) } \\
& y=p x+1 \text { SAME SLOPE }
\end{aligned}
$$

b) $3 x+y=1$

$$
x+y=p(x+2)
$$

(1) DIFF y-int.

$$
\begin{aligned}
x-2 y & =4 \\
-2 y & =-x+4 \\
y & =\frac{1}{2} x-2 \quad m=\frac{1}{2} \\
y & =-2
\end{aligned}
$$

(2)

$$
\begin{aligned}
y & =p x+1 \\
p & =m \\
& =\frac{1}{2} \\
\therefore p & =\frac{1}{2}
\end{aligned}
$$

(1) $y=-3 x+1 \quad m=-3$
(2)

$$
\begin{aligned}
x+y & =p x+2 p \\
y & =p x-x+2 p \\
y & =(p-1) x+2 p
\end{aligned}
$$

$$
p-1=-3
$$

$$
p=-2
$$

y-int?

$$
\begin{aligned}
2 p & \Rightarrow 2(-2) \\
& =-4 \text { Good! }
\end{aligned}
$$

B: Equivalent Systems...

Yesterday, I needed 3 Timmy's coffees and 2 donuts to get the day started. That cost me $\$ 8.75$. Today, I only needed one coffee and two donuts which cost $\$ 4.25$. What is the cost of a coffee and a donut?

Let c represent cost of a coffee Let d represent " " "doughnut
(1) $3 c+2 d=8.75$
(2) $c+2 d=4.25$
(2) $c=4.25-2 d$

Sub into (1)

$$
\begin{aligned}
3(4.25-2 d)+2 d & =8.75 \\
12.75-6 d+2 d & =8.75 \\
-4 d & =-4 \\
d & =1
\end{aligned}
$$

Psbinto (2)

$$
\begin{aligned}
c+2(1) & =4.25 \\
c & =4.25-2 \\
& =2.25
\end{aligned}
$$

\therefore The cost:
Coffee $\$ 2.25$
Doughnut $\$ 1.00$

Two Tim's lattes and two cookies cost $\$ 7.10$. Five lattes and four cookies cost $\$ 16.95$. Determine the cost of a latte and a cookie.

$$
\text { cookie }=0.80
$$

