5.1 Completing the Square The process of completing the square allows you to change a quadratic equation from _____ form to _____ form. standard form vertex form $$y = x^2 + 4x + 3$$ $$y = (x + 2)^2 - 1$$ Ex. 1 Use tiles to complete the square for $y = x^2 + 2x + 7$. ## **STEPS** - Place the _____ term in the upper left to make a square . - Place the _____ terms evenly to the right and below the x² term. Place the "____ " off to the side. Add "____ " to make a square...use the zero principle to place the same number of opposite "_____" off to the side. - Write the expression in ____ Ex. 2 Rewrite each equation in vertex form using tiles to complete the square. a) $$y = x^2 + 8x - 3$$ b) $$y = x^2 - 6x + 2$$ | ļ | l | |---|---| What do you notice? | | Standard
Form | Vertex Form | | |--------------------|------------------|------------------|-----------------------| | Example | # of x-
terms | # of x-
terms | # of
ones
added | | $y = x^2 + 2x + 7$ | | | | | $y = x^2 + 8x - 3$ | | | | | $y = x^2 - 6x + 2$ | | | | What kind of trinomial are you creating? Can you do that without tiles? We can use a chart instead of algebra tiles. - The ---- and ____-terms will go in the chart. The _____ term will stay apart. Ex. 3 Rewrite $y = x^2 + 8x - 3$ in vertex form by algebraically completing the square. | Chart | Algebraically | |-------|---| | | $y = x^2 + 8x - 3$
What do we need to add to
to make it a perfect square trinomial? | | | Factor the trinomial and simplify the constant terms. | Ex. 4 Rewrite each of the following in vertex form by completing the square with tiles, then algebraically. a) $$y = x^2 - 10x - 4$$ b) $$y = x^2 + 12x - 5$$ <u>Algebraically</u>