5.1 Completing the Square

The process of completing the square allows you to change a quadratic equation from

_____ form to _____ form.

standard form

vertex form

$$y = x^2 + 4x + 3$$

$$y = (x + 2)^2 - 1$$

Ex. 1 Use tiles to complete the square for $y = x^2 + 2x + 7$.

STEPS

- Place the _____ term in the upper left to make a square .

- Place the _____ terms evenly to the right and below the x² term.

 Place the "____ " off to the side.

 Add "____ " to make a square...use the zero principle to place the same number of opposite "_____" off to the side.
- Write the expression in ____

Ex. 2 Rewrite each equation in vertex form using tiles to complete the square.

a)
$$y = x^2 + 8x - 3$$

b)
$$y = x^2 - 6x + 2$$

ļ	l

What do you notice?

	Standard Form	Vertex Form	
Example	# of x- terms	# of x- terms	# of ones added
$y = x^2 + 2x + 7$			
$y = x^2 + 8x - 3$			
$y = x^2 - 6x + 2$			

What kind of trinomial are you creating?

Can you do that without tiles?

We can use a chart instead of algebra tiles.

- The ---- and ____-terms will go in the chart.
 The _____ term will stay apart.

Ex. 3 Rewrite $y = x^2 + 8x - 3$ in vertex form by algebraically completing the square.

Chart	Algebraically
	$y = x^2 + 8x - 3$ What do we need to add to to make it a perfect square trinomial?
	Factor the trinomial and simplify the constant terms.

Ex. 4 Rewrite each of the following in vertex form by completing the square with tiles, then algebraically.

a)
$$y = x^2 - 10x - 4$$

b)
$$y = x^2 + 12x - 5$$

<u>Algebraically</u>