3.2 Quadrating Relations

A quadratic function's equation that can be written in the form y = ______,

where , b, and c are constants and a cannot = 0.

 $y=ax^{2}+bx+c=0$ $y=a(0)^{2}+bx+c=0$ y=bx+c This is a _____relation

Here are 3 examples of quadratic relations; state the values of a, b, and c.

 $y=2x^2+3x+1=0$ $y=5x^2-4=0$ $y=x^2$

- The _____ of a parabola is
- either the _____ point (opens up)
- or the _____ point (opens down).
- A vertical line of symmetry which goes

through the vertex is called the

• The x-intercept(s) of a parabola are called its

_____ or roots.

How can you tell if data in linear?

Look at the data from last class

side lengths		number of toothpicks
	0	0
	1	3
	2	9
	3	18
	4	30
	5	45

Linear Relation: If a relation has constant ______ differences i.e. (slope) the relation is linear.

Quadratic Relation: If a relation has constant ______ differences the relation is quadratic.

Calculate the first and second differences to determine whether the relation is linear, quadratic or neither.

x	У
-1	5
0	7
1	9
2	11
3	13

Х		У
	-2	3
	-1	-3
	0	5
	1	-3
	2	3

x		у
	-3	7
	0	4
	3	1
	6	-2
	9	-5

x	у
1	4
2	6
3	12
4	18
5	28

Application

The path of a golf ball is modelled by the equation $y = -x^2 + 5x$ where x represents the horizontal distance travelled by the ball in meters and y represents the height of the ball in meters.

a) Complete the table of values and graph the relation

- b) Determine the coordinates 0f the vertex
- c) What was the maximum height of the ball?
- d) How far away does the ball land?
- e) What was the height of the ball 4m away from the golfer?