2.1 Midpoint and Review of y = mx + b

Remember...

To write the equation of a line you need:

- Perpendicular lines have slopes that are
- Given two points, find slope using:
- Given two points, find slope using
- Same x-int means find the x-int by substituting _____, then use this point, _____, as a point on the line to find _____.

y = mx + b

• Parallel lines have the _____ slope.

equation, along with _____, to find _____.

Examples: Find the equations of the following lines:

- a) passes through C(3,-4) and D(-1,7)
- b) perpendicular to 4x + 3y 7 = 0 with the same x-intercept as 2x + 3y 12 = 0

• Use _____ point on the line to substitute into the

SPECIAL CASES: Horizontal & Vertical Lines

c) a vertical line passing through (-3,5)

d) a horizontal line passing through (7,-2)

The Midpoint

Notation:	is used for midpoint. Remember that	denotes slope!
7 6	What are the coordinates segment AB?	s of the midpoint of
5 4 3 2 (1,2)	How can you determine t algebraically given the co the endpoint?	•
(x ₁ ,y ₁)	The coordinates of the midpoint of a line segment are:	
	(x ₂ ,y ₂)	

Ex. 1 Find the midpoint of the line segment AB where A(2,-4) and B(-3,5).

 $\underline{\text{Ex. 2}}$ C(4, -3) is the midpoint of a line segment with endpoints A(7, 5) and B. Determine the coordinates of B.

 $\underline{\text{Ex.3}}$ The diameter of a circle has endpoints A(4, -3) and B (-3, 5). Find the centre of the circle.

