## 1.5 Types of Intersections & Equivalent Systems

Solve using the substitution method.

a) 
$$x + y = 8$$
  
  $3x + 3y = -5$ 

b) 
$$p-2q=-3$$
  
  $4q=2p+6$ 

## Types of Intersections

A linear system can have:

SOLUTION

--> The lines intersect at \_\_\_\_ point.

The two linear equations have

- y-intercept \_\_\_\_\_

SOLUTION

--> The lines \_\_\_\_\_ intersect.

The two linear equations have

- \_\_\_\_\_ y-intercepts



The two linear equations have

- \_\_\_\_\_ slope - \_\_\_\_ y-intercept







Ex. 1 Complete the table.

| System<br># | Equations               | Slope | y-int | # of intersections | Solution |
|-------------|-------------------------|-------|-------|--------------------|----------|
| 1           | $y = \frac{2}{3}x - 1$  |       |       |                    |          |
|             | $y=\frac{2}{3}x+2$      |       |       |                    |          |
| 2           | $y = -\frac{1}{2}x - 1$ |       |       |                    |          |
|             | x + 2y = -2             |       |       |                    |          |
| 3           | $y = -\frac{3}{4}x + 1$ |       |       |                    |          |
|             | y = 2x + 1              |       |       |                    |          |

Ex. 2 For what value of p will the system of linear equations have NO solution?

a) 
$$x - 2y = 4$$
  
  $y = px + 1$ 

b) 
$$3x + y = 1$$
  
  $x + y = p(x + 2)$